366 research outputs found

    The Population Genetic Signature of Polygenic Local Adaptation

    Full text link
    Adaptation in response to selection on polygenic phenotypes may occur via subtle allele frequencies shifts at many loci. Current population genomic techniques are not well posed to identify such signals. In the past decade, detailed knowledge about the specific loci underlying polygenic traits has begun to emerge from genome-wide association studies (GWAS). Here we combine this knowledge from GWAS with robust population genetic modeling to identify traits that may have been influenced by local adaptation. We exploit the fact that GWAS provide an estimate of the additive effect size of many loci to estimate the mean additive genetic value for a given phenotype across many populations as simple weighted sums of allele frequencies. We first describe a general model of neutral genetic value drift for an arbitrary number of populations with an arbitrary relatedness structure. Based on this model we develop methods for detecting unusually strong correlations between genetic values and specific environmental variables, as well as a generalization of QST/FSTQ_{ST}/F_{ST} comparisons to test for over-dispersion of genetic values among populations. Finally we lay out a framework to identify the individual populations or groups of populations that contribute to the signal of overdispersion. These tests have considerably greater power than their single locus equivalents due to the fact that they look for positive covariance between like effect alleles, and also significantly outperform methods that do not account for population structure. We apply our tests to the Human Genome Diversity Panel (HGDP) dataset using GWAS data for height, skin pigmentation, type 2 diabetes, body mass index, and two inflammatory bowel disease datasets. This analysis uncovers a number of putative signals of local adaptation, and we discuss the biological interpretation and caveats of these results.Comment: 42 pages including 8 figures and 3 tables; supplementary figures and tables not included on this upload, but are mostly unchanged from v

    Parallel altitudinal clines reveal trends in adaptive evolution of genome size in \u3ci\u3eZea mays\u3c/i\u3e

    Get PDF
    While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes

    Reduced signal for polygenic adaptation of height in UK Biobank

    Get PDF
    Several recent papers have reported strong signals of selection on European polygenic height scores. These analyses used height effect estimates from the GIANT consortium and replication studies. Here, we describe a new analysis based on the the UK Biobank (UKB), a large, independent dataset. We find that the signals of selection using UKB effect estimates are strongly attenuated or absent. We also provide evidence that previous analyses were confounded by population stratification. Therefore, the conclusion of strong polygenic adaptation now lacks support. Moreover, these discrepancies highlight (1) that methods for correcting for population stratification in GWAS may not always be sufficient for polygenic trait analyses, and (2) that claims of differences in polygenic scores between populations should be treated with caution until these issues are better understood.Editorial noteThis article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter)

    Amniotic fluid embolism incidence, risk factors and outcomes: a review and recommendations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amniotic fluid embolism (AFE) is a rare but severe complication of pregnancy. A recent systematic review highlighted apparent differences in the incidence, with studies estimating the incidence of AFE to be more than three times higher in North America than Europe. The aim of this study was to examine population-based regional or national data from five high-resource countries in order to investigate incidence, risk factors and outcomes of AFE and to investigate whether any variation identified could be ascribed to methodological differences between the studies.</p> <p>Methods</p> <p>We reviewed available data sources on the incidence of AFE in Australia, Canada, the Netherlands, the United Kingdom and the USA. Where information was available, the risk factors and outcomes of AFE were examined.</p> <p>Results</p> <p>The reported incidence of AFE ranged from 1.9 cases per 100 000 maternities (UK) to 6.1 per 100 000 maternities (Australia). There was a clear distinction between rates estimated using different methodologies. The lowest estimated incidence rates were obtained through validated case identification (range 1.9-2.5 cases per 100 000 maternities); rates obtained from retrospective analysis of population discharge databases were significantly higher (range 5.5-6.1 per 100 000 admissions with delivery diagnosis). Older maternal age and induction of labour were consistently associated with AFE.</p> <p>Conclusions</p> <p>Recommendation 1: Comparisons of AFE incidence estimates should be restricted to studies using similar methodology. The recommended approaches would be either population-based database studies using additional criteria to exclude false positive cases, or tailored data collection using existing specific population-based systems.</p> <p>Recommendation 2: Comparisons of AFE incidence between and within countries would be facilitated by development of an agreed case definition and an agreed set of criteria to minimise inclusion of false positive cases for database studies.</p> <p>Recommendation 3: Groups conducting detailed population-based studies on AFE should develop an agreed strategy to allow combined analysis of data obtained using consistent methodologies in order to identify potentially modifiable risk factors.</p> <p>Recommendation 4: Future specific studies on AFE should aim to collect information on management and longer-term outcomes for both mothers and infants in order to guide best practice, counselling and service planning.</p

    CADM1 inhibits squamous cell carcinoma progression by reducing STAT3 activity.

    Get PDF
    Although squamous cell carcinomas (SqCCs) of the lungs, head and neck, oesophagus, and cervix account for up to 30% of cancer deaths, the mechanisms that regulate disease progression remain incompletely understood. Here, we use gene transduction and human tumor xenograft assays to establish that the tumour suppressor Cell adhesion molecule 1 (CADM1) inhibits SqCC proliferation and invasion, processes fundamental to disease progression. We determine that the extracellular domain of CADM1 mediates these effects by forming a complex with HER2 and integrin α6β4 at the cell surface that disrupts downstream STAT3 activity. We subsequently show that treating CADM1 null tumours with the JAK/STAT inhibitor ruxolitinib mimics CADM1 gene restoration in preventing SqCC growth and metastases. Overall, this study identifies a novel mechanism by which CADM1 prevents SqCC progression and suggests that screening tumours for loss of CADM1 expression will help identify those patients most likely to benefit from JAK/STAT targeted chemotherapies

    Searching for DNA Lesions: Structural Evidence for Lower- and Higher-Affinity DNA Binding Conformations of Human Alkyladenine DNA Glycosylase

    Get PDF
    To efficiently repair DNA, human alkyladenine DNA glycosylase (AAG) must search the million-fold excess of unmodified DNA bases to find a handful of DNA lesions. Such a search can be facilitated by the ability of glycosylases, like AAG, to interact with DNA using two affinities: a lower-affinity interaction in a searching process and a higher-affinity interaction for catalytic repair. Here, we present crystal structures of AAG trapped in two DNA-bound states. The lower-affinity depiction allows us to investigate, for the first time, the conformation of this protein in the absence of a tightly bound DNA adduct. We find that active site residues of AAG involved in binding lesion bases are in a disordered state. Furthermore, two loops that contribute significantly to the positive electrostatic surface of AAG are disordered. Additionally, a higher-affinity state of AAG captured here provides a fortuitous snapshot of how this enzyme interacts with a DNA adduct that resembles a one-base loop.National Institutes of Health (U.S.) (grant no. P30-ES002109)National Institutes of Health (U.S.) (grant no. GM65337)National Institutes of Health (U.S.) (grant no. GM65337-03S2)National Institutes of Health (U.S.) (grant no. CA055042)National Institutes of Health (U.S.) (grant no. CA092584)Repligen Corporation (KIICR Graduate Fellowship

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    corecore